23 research outputs found

    Antennas for UWB Applications

    Get PDF
    “Antennas for UWB Applications” chapter deals with an overview of ultrawideband (UWB) antennas used for different applications. Some fundamental and widely used radiators, such as fat monopole, microstrip-fed and coplanar waveguide (CPW)-fed slot antennas, and tapered end-fire antennas are presented. Selected antenna designs are presented in relation to the UWB applications and their dictating radiation and operation principles. The demonstrated UWB antennas include antennas for handheld devices used for personal area network (PAN) communications; antennas for localization and positioning; UWB antennas for radio-frequency identifications (RFIDs); radar antennas for through-wall imaging, for ground-penetrating radar (GPR), and for breast tumor detection; and more generally, UWB antennas used for sensing. For some of the aforementioned applications, UWB antennas with special characteristics are needed, and they are presented and associated with the relevant applications. These include reconfigurable UWB antennas, metamaterial-loaded UWB antennas, and conformal UWB antennas. The usefulness of these special characteristics in comparison with the claimed advantages is critically evaluated. For the UWB applications presented in the chapter, one type or UWB antenna is recommended

    Voltage-Doubler RF-to-DC Rectifiers for Ambient RF Energy Harvesting and Wireless Power Transfer Systems

    Get PDF
    Wireless Power Transfer (WPT) is promoted as a key enabling technology (KET) for the widespread use of batteryless Internet of Things (IoT) devices and for 5G wireless networks. RF-to-DC rectifiers are essential components for the exploitation of either ambient RF power or wireless transmitted power from a dedicated source. There are several alternative rectifier topologies which can be selected depending on the desired wireless charging scenario and may include one or more diodes. For full rectification, a minimum of two diodes are needed. The current chapter discusses various implementations of voltage-doubler designs, which revolve around the basic topology of two diodes and two capacitors. Schottky diodes are usually used, in combination with lumped capacitors. Off-the-shelf diodes include both separate diodes and integrated voltage-doubler topologies in a single package. Rectifiers are inherently narrowband, non-linear devices, and the RF-to-DC efficiency, which is usually the figure of merit, depends non-linearly on both the termination load and the received RF power. The bandwidth of the rectifier depends on the preceding matching network

    Novel selective feeding scheme integrated with SPDT switches for a reconfigurable bandpass-to-bandstop filter

    Get PDF
    This paper demonstrates a new technique for designing high performance reconfigurable bandpass-to-bandstop filters by employing a ring resonator and a selective feeding scheme integrated with single-pole double-throw switches (SPDT). The transformation from bandpass-to-bandstop mode and vice-versa is achieved by connecting or disconnecting two\lambda g/4 open-circuited stubs on the ring using PIN diodes. SPDT switches are employed for electronic switching between two different feeding line sections. In the bandpass state the resonator presents two transmission zeros near the edges of the passband and four attenuation poles inside the passband, enhancing the filter's performance, thus achieving excellent sharp rejection with high roll-off-rate (ROR20dB). On the other hand, high stopband rejection with wide bandwidth, good return loss and good skirt-band attenuation rates are achieved in the bandstop state. Even-and odd-mode analysis is adopted and closed-form expressions are derived to describe the filter's behaviour. To verify the validity of the proposed design, a prototype filter was fabricated and measured. In measurement, a 65% 3-dB bandwidth bandpass filter (BPF) with an insertion loss of 0.86 dB was switched to a 70% 20-dB bandwidth bandstop filter (BSF) with more than 40 dB stopband rejection

    Dynamically Reconfigurable SIR Filter Using Rectenna and Active Booster

    Get PDF
    Obrađeni su populacijski parametri čaglja (Cannis aureus L.) u proteklom desetogodišnjem razdoblju. Istraživanjem su se obuhvatila lovišta koja pripadaju širem području plavljenja rijeke Save. Rezultati ovog istraživanja pomažu boljem razumijevanju dinamike populacije čaglja i širenju areala ove vrste koja je već prisutna na čitavom prostoru Republike Hrvatske

    A multiband circular polarization selective metasurface for microwave applications

    Get PDF
    In this research article, a multiband circular polarization selective (CPS) metasurface is presented. A reciprocal bi-layered metasurface is designed by introducing the chirality in the structure. The top layer of the proposed metasurface is composed of circular split-ring resonator with a cross shape structure inside it. The same structure is printed on the bottom side of the proposed metasurface by rotating it at an angle of 90° to achieve chirality in the structure. The proposed metasurface is able to add CPS surface capability between 5.18 and 5.23 GHz for y-polarized incident wave. For the frequency band of 5.18–5.23 GHz, the transmission goes up to − 4 dB, while the polarization extinction ratio (PER) reaches up to − 27.4 dB at 5.2 GHz. Similarly, for x-polarized incident wave, three strategic CPS operating bands are achieved within the frequency ranges of 10.64–10.82 GHz, 12.25–12.47 GHz, and 14.42–14.67 GHz. The maximum PER of 47.16 dB has been achieved for the 14.42–14.67 GHz frequency band at 14.53 GHz. Furthermore, the response of the metasurface does not vary against oblique incidences up to 45°. The simple structure, angular stability, multiband and miniaturized size make this metasurface an outstanding applicant for polarization conversion and biomedical applications

    A multifunctional ultrathin flexible bianisotropic metasurface with miniaturized cell size

    Get PDF
    In this paper, a flexible bianisotropic metasurface possessing omega-type coupling is presented. The designed metasurface behaves differently when excited from either forward (port 1) or back (port 2) sides. It provides an absorption of 99.46% at 15.1 Gigahertz (GHz), when illuminated from port 1, whereas, on simultaneous illumination from port 2, it behaves like a partially reflective surface (PRS). Furthermore, the presented metasurface not only acts as an in-band absorptive surface (port 1) and partially reflective surface (port 2), but it also provides 97% out-of-band transmission at 7.8 GHz. The response of the presented metasurface remains the same for both transverse Electric (TE) and transverse magnetic (TM) polarized wave or any arbitrary linearly polarized wave. Additionally, the response of the metasurface is angularly stable for any oblique incidence up to 45º. The proposed ultrathin flexible metasurface with absorption, partial reflection and out-of-band transmission properties can be used in the Fabry Perrot cavity antenna for gain enhancement with radar cross-section (RCS) reduction both for passband and stop-band filtering, and conformal antenna applications

    Demonstration of Reconfigurable BPFs with Wide Tuning Bandwidth Range Using 3λ/4 Open- and λ/2 Short- Ended Stubs

    No full text
    In this paper, two implementations of reconfigurable bandwidth bandpass filters (BPFs) are demonstrated both operating at a fixed center frequency of 2.4 GHz. The proposed reconfigurable bandwidth filters are based on a square ring resonator loaded with λg/4 open-ended stubs that are permanently connected to the ring and converted to either 3λg/4 open-ended stubs or λg/2 short-ended stubs by means of positive-intrinsic-negative(PIN) diodes to implement two reconfigurable bandwidth states for each case. Due to the symmetrical nature of the design, even- and odd-mode analysis is used to derive the closed-form to describe the reconfigurable filters’ behavior. The switching between narrowband and wideband is achieved using PIN diodes. In the first implementation (λg/4 open-ended stubs to 3λg/4 open-ended stubs), a reconfigurable bandwidth bandpass filter is proposed where additional out-of-band transmission zeros are generated by integrating a λg/2 open-ended stub at the input port. In the second implementation (λg/4 open-ended stubs to λg/2 short-ended stubs), further improvement in the upper stopband is achieved by utilizing a pair of parallel coupled lines (PCLs) as feeding lines and a pair of λg/4 high impedance short-ended stubs implemented at the input and output ports. To verify the validity of the simulated results, the prototypes of the proposed reconfigurable filters were fabricated. For the first case, measured insertion loss is less than 1.8 dB with a switchable 3-dB fractional bandwidth (FBW) range from 28% to 54%. The measured results for the second case exhibit a low insertion loss of less than 1 dB and a 3-dB fractional bandwidth that can be switched from 34% to 75%, while the center frequency is kept constant at 2.4 GHz in both cases

    On the Use of Tunable Power Splitter for Simultaneous Wireless Information and Power Transfer Receivers

    Get PDF
    The use of a tunable power splitter (PS) as a constituent component of a simultaneous wireless information and power transfer (SWIPT) system is discussed. Two varactor diodes are used to achieve a tunable output power ratio P2 : P3 varying from 1 : 1 to 1 : 10 under good matching conditions. The SWIPT system that operates at 2.4 GHz consists of a typical patch antenna, cascaded with the tunable PS, and a voltage doubler rectifier. The constituent components were implemented and tested as stand-alone devices and were subsequently combined in a measurement system using interconnectors. The effect of the tunable PS was explored with respect to the SNR measurements on the port that is intended for the information decoding receiver and the DC voltage measurements on the termination load of the rectifier that is connected directly on the energy harvesting port of the tunable PS. A spectrum analyzer is used for the SNR measurements while the input power is controlled using a signal generator. Both wireless power transmission and on-board measurements verify that the harvested energy can be maximized by using the minimum SNR at the information decoding branch at the expense of DC power consumption required for the biasing of the varactor diodes
    corecore